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ABSTRACT 
An adaptive neural-network approach to target- and clutter-modelling is introduced. A key novelty of this 
approach is that both targets and clutter can be modelled within the same neural network, so that 
detection and recognition can take place simultaneously within an integrated framework. The approach 
can therefore be applied across the spectrum of ATR discrimination levels, e.g.: detection of unknown 
targets in clutter; detection of specific designated targets in clutter; recognition of target subclass post-
detection. The approach is designed to be generically applicable, to data from a variety of sensors, 
including HRRPs, SAR intensity imagery, complex SAR imagery, visible and EO imagery, and burst-
illumination LIDAR. This generic applicability is attributable to the fact that the algorithm adaptively 
models training-exemplar data of arbitrary type and dimensionality. Unlike many current approaches to 
target detection, this approach can exploit a wide range of cues for discriminating targets from clutter 
objects, including detailed grey-level shape information and, for RF sensors, complex/phase information. 
Furthermore, the approach is quick to use in operation, and has been designed with hardware 
implementations in mind.  Successful results are presented for a target (designated building) detection and 
identification problem using real SAR imagery. The approach has been designed to have the future 
potential to offer other very significant new capabilities, e.g. the potential for reducing false-alarm rate in 
urban clutter and improving robustness to extended operating conditions. 

1.0 INTRODUCTION 

1.1 Integrated approach to target detection and recognition 
This paper concerns an adaptive neural-network approach to target- and clutter-modelling. A key novelty 
of the approach is that both targets and clutter can be modelled within the same neural network, so that 
detection and recognition can take place simultaneously within an integrated framework. The approach 
can therefore be applied across the spectrum of ATR discrimination levels, e.g.:  

• Detection of unknown targets in clutter; 
• Detection and recognition of specific designated targets in clutter; 
• Recognition of target subclass post-detection.  

The proposed approach is designed to be generically applicable to data from a variety of sensors, including 
HRRPs, SAR intensity imagery, complex SAR imagery, visible and EO imagery, and burst-illumination 
LIDAR. This generic applicability is attributable to the fact that the algorithm adaptively models training-
exemplar data of arbitrary type and dimensionality. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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When used for target detection, the approach exploits the kind of knowledge of the signature of the target 
that would conventionally be used only at the post detection identification stage, in order to influence the 
detection decision.  This allows potentially crucial signature information (e.g. detailed grey-level shape 
information and, for RF sensors, complex/phase information) to be used at the earliest stages of target 
detection.  This offers the potential to mitigate the false-alarm rate of the detection process very 
significantly.  The resulting “identify-for-detect” principle is analogous to the “track-before-detect” 
principle well known in the context of tracking algorithms [8]. The key to this unified approach to 
automatic target detection and recognition lies in the use of a technique with the ability to: 

• Model targets with varying degrees of specificity and generalisation, depending on the scenario; 

• Model varied and complicated clutter with a high degree of generalisation. 

Many potential approaches for modelling both targets and clutter cannot be used for simultaneous target 
detection and recognition, because of the computational expense involved in conducting the comparisons 
at each location.   In contrast, the proposed algorithm is quick to use in operation, and has been developed 
with hardware implementations in mind. 

1.2 Background 
The developed approach is the result of neural network research into transformation-robust pattern 
recognition.  The motivating aim has been to develop techniques that enable target detection and 
recognition to be robust to both continuous and discontinuous complex transformations (where complex 
transformations are defined to be transformations of individual objects within the sensor image, as 
opposed to simple perspective transformations of the whole image).  In the ATR context, continuous 
complex transformations include 3-D rotation and articulation (e.g. the rotation of a tank’s turret with 
respect to its hull).  Examples of discontinuous complex transformations include the replacement of one 
type of vehicle with another of similar type, partial occlusion, differences in equipment fit, and change in 
operational configuration. 

Complex transformations are intimately associated with ill-defined properties of the objects to be 
recognised.  It is likely that characterisation of these properties will require reference to a complex, 
nonlinear, hierarchical pattern recognition technique, with the ability to adapt to training data that is 
characteristic of those ill-defined properties.  A neural network is such a technique. 

In the neural network literature, the term “invariance” is used to refer to what the military user or systems 
designer would term “robustness”; neural network papers generally adopt the mathematical terminology of 
group theory rather than the terminology of the ATR application domain.  A neural network (or some part 
of it) is said to be invariant under a transformation of the data if its recognition output response does not 
change (or changes only gradually) as the transformation is applied to the data.  This property of the 
recognition response is clearly what is desired if one wishes to build a neural network based ATR system 
that is robust with respect to variation in the sensor data. 

1.3 Outline 
The structure of this paper is as follows. Section 2 outlines the concepts behind the adaptive neural 
network algorithm, by discussing neural network approaches to transformation invariance.  Section 3 
briefly discusses the approach implemented within algorithms to date.  Section 4 presents experimental 
results for detection and recognition of a particular building within SAR imagery of an urban area. 
Conclusions and future work are in Section 5. 
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2.0 ALGORITHMIC CONCEPTS 

2.1 Discussion of neural network approaches to transformation invariance 
Whether explicitly acknowledged or not, many neural networks capable of transformation invariance are 
symmetry networks [10]. These are neural networks in which some synaptic weights are equal (or 
approximately equal) to others.  Put in another way, these are networks whose configuration of synaptic 
weights is symmetric (invariant) under certain groups of permutation transformations.  This is illustrated 
graphically in Figure 1.  The recognition outputs of neurons that possess this symmetry property are 
consequently invariant under corresponding groups of transformations on their input data.  This 
conclusion is related to the group-invariance theorem of Minsky & Papert [5], and is explained more fully 
by Webber [16]. 
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Figure 1: Illustration of a symmetry network.  The permutation transformation in the data shown 
in the top half of the diagram is matched by a permutation in the synaptic weights (the templates 

in the hierarchy  W) shown in the bottom half.  

“Weight-sharing” [5][10][11] provides a trivial example of synaptic-weight symmetry in a symmetry 
network, although this does not begin to exemplify the full potential of synaptic-weight symmetry as a 
means of achieving transformation robustness.  In a weight-sharing architecture, an array of neural 
network recognition nodes (“neurons”) is forced to generate an output recognition response that is 
invariant with respect to global 2-D translations of the whole image.  This is achieved by constructing the 
architecture of the network so that neighbouring neurons in the array share neighbouring input connection 
weights (neighbouring “synaptic weights”) in common, i.e. the architecture is constructed so that 
neighbouring synaptic weights of neighbouring neurons are equal.  The result is that as objects are 
translated across the sensor image, the recognition responses of the neurons are correspondingly just 
translated across their array rather than being changed entirely beyond recognition. This trivial example of 
a symmetry network therefore exhibits the same translation invariance property as the standard template 
correlator. More sophisticated forms of synaptic weight symmetries than simple globally translation-
invariant weight-sharing can be designed into neural network architectures.  The rotation-invariant 
network of Fukumi et al [1] (applied to coin recognition), the handwritten zip-code recogniser of Le Cun 
et. al. [4] and the Neocognitron [2][3] all use built-in weight equalities implicitly to achieve their 
transformation robustness.  

In all the examples in the previous paragraph, the weight symmetries are designed into the architecture at 
the outset (a priori) and are not derived by learning.  Such static or “hard-wired” weight symmetries are 
rarely sufficient for handling transformations more sophisticated than simple global transformations of the 
whole sensor image such as 2-D translation, rotation and scale magnification.  This is because prior 
knowledge of the transformation properties of individual objects is generally insufficient or too ill-defined 
to allow the neural network’s designer to understand how to hard-wire appropriately sophisticated and 
complex weight symmetries into the network’s architecture; in other words, object/model-dependent 
weight symmetries will be necessary for true robustness to articulation and changes in operational 
configuration.  
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Some improvement on hard-wiring fixed symmetries in this way may be obtained by constraining the 
network learning algorithm’s equations to enforce and maintain particular groups of simple weight 
symmetries throughout the learning process. An example is provided by Rumelhart et al. [7], in which 
weight sharing constraints on the learning equations were used to distinguish T and C shapes in simple 
synthetic images, independently of 2-D translation and 90o rotation.  This approach still has the 
disadvantage that the network designer must understand exactly what groups of symmetry transformations 
are to be imposed on the learning equations, and how to do so. 

In each of the approaches outlined above, the algorithm’s designer imposed onto the neural network a 
particular, known, well-defined group of transformation invariances.  In the case of ill-defined, complex, 
object-dependent transformations such as articulation or changes in operational configuration, the designer 
generally has insufficient understanding of how to impose the ill-defined invariances onto the network in 
the form of supervisory knowledge.  To address this problem, one needs a data-driven means of acquiring 
robustness/invariance under these transformations, through unsupervised learning of real data 
representative of the particular objects that undergo these object-dependent transformations. 

2.2 Symmetry-preserving networks  
Our solution is based on Webber’s discovery that a new class of unsupervised neural networks 
(“symmetry-preserving” networks) can detect invariances/symmetries in the probability distribution 
function (PDF) of their training data, and exploit that new functionality to develop robust response with 
respect to precisely those transformations. In other words, this new class of algorithms can preserve the 
symmetries of the data’s PDF, in the form of matching symmetries in the trained configuration of synaptic 
weights and consequently in the form of matching invariances in the network’s recognition output. In 
principle, such networks can acquire robustness with respect to all manner of ill-defined complex 
transformations of objects in their training data, both continuous and discontinuous discrete 
transformations, simply through exposure to training data containing sufficient (but far from exhaustive) 
numbers of exemplars of the transformed objects. These claims are proved algebraically in Webber [16].  
That paper also demonstrates this new functionality using real images having the full statistical complexity 
of natural scenes and shows that, through exposure to natural scenes, symmetry-preserving networks can 
derive and explain the translation-invariance properties of the complex cells of the visual cortex.  
Webber [17] goes on to demonstrate that, through exposure to natural scenes, symmetry-preserving 
networks can generate fully translation-, rotation- and scale-invariant codes for natural images.  
Symmetry-preserving network algorithms tend to be algorithmically simple, with the advantage that fast 
hardware implementations are feasible. 

2.3 Componential coding, aka combinatorial, multiple-cause or factorial coding 
The unsupervised neural network learning algorithms applied here to integrated target detection and 
recognition are capable of adaptively deriving componential codes to encode/model their training data.  
Componential coding has been alternatively called constituent coding, multiple-cause coding, 
combinatorial coding and factorial coding by various papers that have illustrated the concept using 
simplified synthetic data, e.g. [13][9].  It has since been applied to real data, e.g. for modelling 
handwriting [14] and for modelling sensor signals for the purpose of machine condition 
monitoring [15][6].  The idea is that sensor data having enormous variability may nevertheless be 
modelled effectively, by factorizing the variability down into its constituent building blocks, or 
components.  Thus, one attempts to model the various exemplars of data as variable combinations of the 
building-block components, in the same way that the many tens of thousands of words in the English 
language may be represented as various combinations of 26 letters.  The adaptive learning property of the 
algorithm is needed to derive the appropriate building blocks from the data, because these are generally 
not known a priori.   



An Adaptive Unified Algorithm for Both Detection and Recognition 

RTO-MP-SET-080 38 - 5 

Componential coding is the approach used here to model the combinatorial complexity of urban clutter.  
We introduce a classifier that can distinguish designated targets from clutter by comparing the sensor 
image against a clutter model that combines building block components according to a statistical 
framework.  (Figure 4 will show a few examples of the building blocks we derive from an urban clutter 
training set.)  This is a much more sophisticated approach than simply attempting to compare the sensor 
image directly against a library of target exemplars and a library of clutter exemplars, by measuring which 
library fits the sensor image best. Indeed, attempting simply to compare the sensor image directly against a 
library of clutter exemplars could never produce robust performance, because one would need an 
effectively infinite number of exemplars to catalogue the enormously variable complexity of possible 
urban clutter scenes.  This is the main reason why conventional correlation-filter or template-matching 
methods have not been effective in discriminating targets from urban clutter.  In contrast, an adaptive 
clutter model that can interpolate between training exemplars by attempting to model them as 
combinations of building-block components has a far better chance of being able to model the enormous 
variability of urban clutter sufficiently well to be useful as part of an effective classifier.  

3.0 USE OF THE APPROACH 

3.1 Single-layer implementation 
Learning algorithms capable of symmetry preservation have been incorporated into a Bayesian density 
estimation framework, and can be used to produce a likelihood distribution for the training data.  To date 
only a single-layer implementation of these algorithms has been developed and assessed for radar target 
detection applications.  A multi-layer implementation that will perform hierarchical feature extraction is 
under development.  Such a multi-layer implementation is likely to be necessary for ATR that is robust to 
extended operating conditions (EOCs).  

3.2 Clutter and target likelihoods 
For the problem of recognition of target subclass post-detection, these algorithms are trained on exemplars 
of each target subclass. This would allow any subsequent unseen training data to be compared against each 
trained subclass model in order to generate a separate likelihood for each target subclass.  After specifying 
prior subclass probabilities, Bayes’ theorem can then be used to classify new objects by means of posterior 
subclass probabilities in the conventional Bayesian manner, e.g. [12].   

For the problem of integrated target detection and recognition in clutter (identify-for-detect), a likelihood 
distribution is learned for the clutter as well as the target.  This allows target detection in clutter to be 
performed, by comparing the relative likelihoods with which the image chip around any given location in 
a SAR scene matches the target and clutter models.  In such cases, training the algorithm produces:  

• A set of parameters cθ  that define the likelihood map for the clutter; 

• A set of parameters tθ  that define the likelihood map for the target.   

For a scene x , these can be used to produce a clutter likelihood map )|( cc xl θ , and a target likelihood map 
)|( tt xl θ .  Using Bayes’ theorem these can be combined to provide a map of the posterior target class 

probability: 
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where 0>tπ  and 0>cπ  are the prior probabilities for target and clutter respectively, subject to 
1=+ tc ππ .  Target-versus-clutter decisions can then made by comparing the posterior target class 

probability against a pre-specified threshold, and the value of this threshold may be varied in order to trace 
out a receiver-operator characteristic (ROC) curve.  Note that an identical ROC curve may be produced by 
fixing the threshold for the posterior probability at some nominal value (say 1/2) and instead varying the 
ratio ct ππ / , i.e. the ratio of the prior probability for targets against the prior probability for clutter. 

4.0 EXPERIMENTAL RESULTS 

4.1 Introduction 
The proposed approach has been applied to the problem of recognising a particular building within SAR 
imagery of an urban area.  Detection of specific building types could have many military uses, such as: 

• Detection and identification of terrorist training facilities.  
• Detection and identification of complexes associated with the development and storage of 

Weapons of Mass Destruction (WMD).   
• Detection and identification of civilian buildings that define exclusion areas for weapon 

engagement, such as hospitals and schools. 

The main purpose of the example is, however, to provide an initial proof of principle for the application of 
these new techniques to the generic problem of target detection and identification in urban clutter using 
SAR imagery. These techniques will in future be applied to the more specific problem of detecting 
military vehicles in urban clutter.  In the mean-time, several factors must be taken into account when 
considering the relevance of the building identification results to the problem of military vehicle detection 
and identification.  Firstly, the selected target building is larger than most military vehicles; thus, more 
“pixels on target” are available than is usual, which it could be argued may make the task of detecting and 
identifying a particular building type easier than the task of detecting and identifying a particular military 
vehicle type.  However, a counter-argument is that size information cannot be exploited as a discriminant 
between the target and the clutter when the target is a building of similar size to the surrounding clutter 
buildings; this factor makes detecting building types more challenging than detecting vehicle types for 
methods that (unlike this method) rely only on size discriminants.  Another counter-argument is that the 
target building is likely to have more features in common with the surrounding clutter buildings than a 
military vehicle would have in common with the surrounding clutter buildings.  Thus, some features that 
could be used to distinguish a vehicle from a building (perhaps related to different radar cross-sections 
from different types of material) can no longer be exploited as discriminants when distinguishing 
buildings from other buildings.  

4.2 Experiments 
The dataset used for this demonstration consists of high-resolution SAR imagery of a built-up area.  
Specifically, the dataset consists of 18 SAR images of the urban scene, from a range of different aspect 
angles.  All 18 images were 512512× -pixels in size.  10 of these were used for training, with the 
10 successive training images separated by 4-degree intervals in aspect angle, and the other 8 were used 
for testing, with the 8 successive test images separated by 4-degree intervals in aspect angle. Alternate 
aspect angles were used for training and testing to ensure a proper test of generalisation over aspect angle, 
i.e. no test image was closer than 2 degrees in aspect angle to any training image.  

Examples of the SAR imagery are shown in Figure 2, with the designated (target) building ringed.  It is 
clear that there are many clutter objects that have returns of similar size and intensity to those from the 
selected target.  Figure 3 displays extracted ( 6464× -pixel) image chips, centred on the target. 
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Figure 2: Examples of the SAR imagery of an urban scene, with the designated (target) building 
ringed in yellow. The left-hand image is view A and the right-hand image is view B. 

   

Figure 3: Examples of extracted target chips from the SAR imagery. The left-hand chip is 
extracted from view A and the right-hand chip is extracted from view B. 

Training data for the target model were obtained by manually locating the target in each of the training 
images and, for each training image, extracting a 6464× -pixel image chip centred on the target.  This 
produced 10 target-model training chips.  Training data for the clutter model was obtained by sliding 

6464× -pixel input windows over the entire set of training imagery.  Some of the building blocks that 
constitute the trained clutter model are displayed in Figure 4.   

Input windows that contained the target were not removed from the training data for the clutter model.  
The motivation for not removing the targets from the clutter training data is that it allows the clutter model 
to be trained on large areas of surveillance imagery, without human intervention to edit out targets.  This 
introduces the potential to train the clutter model in situ, at the same time as the sensor platform surveys 
the area in which targets are to be detected. This mode of operation allows the clutter model to be refined 
so as to model the target’s local environment optimally.  The inclusion of targets in the clutter training 
data has minimal effect on the properties of the trained clutter model, and so does not cause significant 
degradation in the performance of the target-versus-clutter likelihood comparison.  This is because the 
clutter model is trained in order to derive building blocks that best model the average properties of the 
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bulk of the clutter training data, so the inclusion of a few targets amongst the clutter training data will bias 
this average insignificantly.  This is in marked contrast with the effect that including targets among the 
clutter exemplars would have on traditional template-matching classifiers (correlation-filters); for 
template-matching classifiers, any target chips that pollute the clutter training data would match as would 
the exemplars of the target.  This is another advantage of the componential coding approach over 
traditional template-matching classifiers, over and above the combinatorial complexity issue discussed 
earlier.  

  

Figure 4: A subset of the building blocks that define the trained clutter model. 

4.3 Results 
The trained target and clutter models are used to produce target and clutter likelihood maps for each test 
scene. Once the target and clutter prior probabilities are specified, these likelihood maps can be used to 
produce a map of the posterior target class probabilities for each scene, using equation (1).  Figure 5 
displays the posterior class probabilities for views A and B, using a low ratio for the prior probability of a 
target versus the prior probability of clutter. Grey boxes have been centred on the locations for which the 
posterior class probabilities are higher than 0.5.  For view A, the only detection box is centred on the 
target.  For view B, there are two areas in which the posterior class probability is higher than 0.5.  The 
upper area corresponds to the target, while the lower area is the result of a clutter false alarm. 
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Figure 5: Posterior target class probability maps.  The left-hand image is for view A and the 
right-hand image is for view B.  Detections are surrounded by grey boxes. 

Increasing the ratio of the prior probability for targets to the prior probability for clutter results in plots for 
the posterior target class probability that display more false alarms. (Increasing the ratio of the prior 
probabilities for a fixed value of the detection threshold on the posterior target probability is 
mathematically equivalent to reducing the detection threshold on the posterior target probability for a 
fixed value of the ratio of prior probabilities, as has been explained earlier.)  Consequently, either varying 
the ratio of the prior probabilities for a fixed value of the detection threshold on the posterior target 
probability or varying the detection threshold on the posterior target probability for a fixed value of the 
ratio of prior probabilities will trace out an identical Receiver Operating Characteristic (ROC) curve for 
the target detection probability as a function of the false alarm rate. This ROC curve is provided in Section 
4.5. 

4.4 Baseline results 
As an indicator of algorithm performance, two sets of baseline results are presented.  Namely: 

• Application of a correlation-filter (template matching). 

• Application of a correlation-filter to the areas identified as anomalous by a Constant False Alarm 
Rate (CFAR) filter. 

The templates for the correlation-filter were the same training target chips that were used to train the target 
model of the adaptive neural network algorithm.  The same image chips as were used to train the clutter 
model of the neural network algorithm cannot be used as negative exemplars by the correlation-filter.  
This is because, for any correlator-filter classifier to function, the target would have to be manually edited 
out from the clutter training data, and this requirement would remove the operational potential for 
collecting the training data for the clutter model in-situ.  More significantly, it would in general be 
impractical to use clutter chips as negative exemplars for a correlation-filter classifier, because an 
effectively infinite library of such negative exemplars would be required in order to provide robust 
generalisation to unseen clutter configurations.  In contrast, the adaptive neural network algorithm 
presented in this paper avoids this problem, by using an adaptive interpolating clutter model to extract the 
building-block components of the clutter, and thus to model unseen clutter configurations as variable 
combinations of these building-block components.   



An Adaptive Unified Algorithm for Both Detection and Recognition  

38 - 10 RTO-MP-SET-080 

 
The CFAR-filter assumed a Gaussian background noise distribution for the logarithms of the amplitudes 
of the complex-valued SAR returns. 
 
Figure 6 displays the correlation-filter maps (i.e. the maximum correlation values over all target templates, 
as a function of image location) for views A and B.  Both images are displayed using the same grey-scale 
map (i.e. the same relationship between correlator output value and pixel brightness). Comparison with the 
target locations in Figure 2 reveals that there is a (local) peak corresponding to the target in the correlation 
map for each of the two views; however, many clutter objects also give large correlation values. 
 

  

Figure 6: Maps of the outputs from a correlation-filter.  The left-hand image is for view A and the 
right-hand image is for view B. 

For the same views A and B, Figure 7 displays the outputs obtained by applying a correlation filter to the 
areas identified as anomalous by a CFAR filter; thus, the template-matching identification capability of the 
correlation filter is used to mitigate the initial false-alarm rate of the CFAR filter.  Again, both images are 
displayed using the same grey-scale map.  Comparison between the plots in Figure 7 with those in Figure 
6 shows that one is able to remove many of the correlation peaks caused by clutter objects by combining 
the CFAR and correlation filters.  Moreover, this does not seem to be at the expense of peaks at the target 
location.  However, there are still considerably more false alarms than from the neural network algorithm 
(see Figure 5).  The relative performances are quantified in ROC curves in Section 4.5. 
 

4.5 ROC curve comparison 
Visual comparison of Figure 5, Figure 6 and Figure 7 indicates that the adaptive neural network algorithm 
provides lower false alarm rates than the CFAR-filter/correlation-filter chain, which predictably provides 
lower false alarm rates than the correlation-filter alone.  A more rigorous assessment of algorithm 
performance is possible by comparing ROC curves. 
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Figure 7: Maps of the output from a correlation-filter applied to the areas identified as 
anomalous by a CFAR filter.  The left-hand image is for view A and the right-hand image is for 

view B. 

To calculate these ROC curves, binary decisions between target and clutter are made for the pixels in a 
processed image, by applying a simple threshold to the image.  If a pixel value lies above the threshold, 
then the pixel is declared to be a target, while if a pixel value lies below the threshold, the pixel is declared 
to be clutter.  Targets are only counted once; exclusion zones around the targets have been applied in order 
to avoid counting the extremities of targets as clutter. By altering the threshold a ROC curve of target 
detection probability versus false alarm rate is obtained.   For the adaptive neural network algorithm the 
processed image is the map of the posterior target class probabilities.  Selection of the threshold therefore 
corresponds to a threshold on the posterior class probability.  For the two baseline algorithms the 
processed images are the correlation filter outputs (applied to areas identified as anomalous by the CFAR-
filter in the second case).  The obtained ROC curves are display in Figure 8. 
  

  

Figure 8: ROC curve comparison.  Target detection probability along vertical axis,  Log10 of false 
alarm rate per square km along horizontal axis.  The black (solid) line is for the adaptive neural 
network algorithm, the blue (dashed) line is for a correlation-filter applied to the areas identified 

as anomalous by a CFAR filter, and the red (dotted) line is for a correlation-filter alone. 

The curve for the adaptive neural network algorithm is closer to the top-left corner than the curves 
obtained using the two baseline techniques, indicating that better target detection and identification 
performance is being obtained.  However, two caveats must be borne in mind when interpreting the results 
from this single experiment: 
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• Each target is only counted once, so the jumps in target detection probability are very coarse. 

• No post-processing has been applied to cluster the detections, so there is some double counting of 
false alarms (visual inspection indicates that this double counting is likely to have more of an 
adverse effect for the correlation-filter baseline algorithm than the other algorithms).  Clustering 
detections in urban clutter can be a very difficult exercise because, with so many clutter detections 
in the close vicinity of the target, it can be far from obvious how to design a clustering algorithm 
to deduce where the target detections end and the clutter detections begin.  

5.0 CONCLUSIONS 

This paper has introduced an adaptive neural-network approach to target- and clutter-modelling.  The 
approach is such that both targets and clutter can be modelled within the same neural network, so that 
detection and recognition can take place simultaneously within an integrated framework. The algorithms 
can therefore be applied across the spectrum of ATR discrimination levels, e.g.: detection of unknown 
targets in clutter; detection of specific designated targets in clutter; recognition of target subclass post-
detection.  The approach builds on the unsupervised neural network principle of symmetry-preservation.  
Symmetry-preserving networks can detect invariances/symmetries (under complex transformations) in the 
PDF of their training data and exploit that functionality to develop robust responses with respect to 
precisely those transformations.  We believe that such networks could ultimately offer the potential for 
target recognition with robustness to EOCs, although this has not been addressed in this paper.  The paper 
provides an initial proof of principle for the application of componential coding to target detection and 
identification, using real SAR imagery in urban clutter; componential coding offers a new handle on 
modelling the combinatorial complexity of urban clutter.  This demonstration concerned recognition of a 
particular building within SAR imagery of an urban area.  Superior performance (in terms of target 
detection probability at a given false alarm rate) was obtained, compared to two baseline approaches based 
on a correlation-filter (template matching), one of which also exploits a CFAR filter as an initial detection 
stage.  Planned future work will more fully assess the componential coding approach for target detection 
in urban clutter, and investigate the symmetry-preserving functionality with the aim of improving 
robustness to EOCs.  
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